• All new members please introduce your self here and welcome to the board:
    http://www.professionalmuscle.com/forums/showthread.php?t=259
Buy Needles And Syringes With No Prescription
M4B Store Banner
ddd
Riptropin Store banner
Generation X Bodybuilding Forum
Buy Needles And Syringes With No Prescription
Buy Needles And Syringes With No Prescription
Mysupps Store Banner
IP Gear Store Banner
Anabolic Hormones Store Banner
Ganabol Store Banner
Spend $100 and get bonus needles free at sterile syringes
Professional Muscle Store open now
LandmarkChem Email Banner
Medtech Store Banner
Bruce Labs Store banner
qtropin
Professional Muscle Store open now
over 5000 supplements on sale at professional muscle store
Buy Needles And Syringes With No Prescription
ESPECIL-2
Buy Needles And Syringes With No Prescription
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store

Pretty cool Testosterone Review

MR. BMJ

Kilo Klub Member / Verified Customer
Kilo Klub Member
Registered
Verified Customer
Joined
Nov 15, 2006
Messages
3,438
https://www.ncbi.nlm.nih.gov/pubmed...jpAPX1rZ6iVjWho1JfiPzqykC5j5BxybeMM3Ik4_MDca8

Full Text:
https://www.ncbi.nlm.nih.gov/books/...VLAKVN2rDHym868rD0iAmyjnFHrYmqqUaBVTlL4_zfVNI

Anabolic Steroid Toxicity.
Middlebrook I1, Schoener B2.
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019-.
2019 Jun 19.

Excerpt
Androgenic-anabolic steroids (AAS) are widely missed worldwide as performance-enhancing agents. The use of AAS started in competitive sports and spread to non-competitive athletes. The World Anti-Doping Agency banned AAS since the 1950s and has continued adding new methods and new variations of AAS. Currently, the CDC estimates that the majority of AAS users are adolescent males.[1] The hypothalamus is the integrating center for the reproductive axis (HPG). It receives signals from the amygdala, olfactory, and visual cortex. Gonadotropin-releasing hormone (GnRH) then gets released into a venous portal system which carries it to adenohypophysis of the pituitary gland. In addition to signals from the CNS, humoral factors from the testes also play a role in modulating the release of GnRH. Gonadotropin-releasing hormone release is pulsatile, seasonal, and circadian. Levels of GnRH are highest during spring and in the morning with peaks occurring every 90 to 120 minutes. Once released, GnRH acts on the pituitary gland and promotes the production and release of luteinizing hormone (LH) and to a lesser extent, follicle stimulating hormone (FSH). Luteinizing hormone, in turn, acts on Leydig cells in the testes, which are the site of production of most of the endogenous androgens. Androgen production also occurs in the adrenal cortex and the conversion of androstenedione peripherally. Testosterone, in turn, inhibits the production of GnRH in the hypothalamus. Testosterone is a 19-carbon steroid and is the most potent endogenous androgen. As such, it is the basis of most AAS. Addition of various functional groups to this basic 19-carbon structure changes androgenic, anabolic, and toxicity profiles of AAS. Testosterone and other AAS act to increase muscle hypertrophy through modulating androgen receptor and its interaction with co-activators. It also increased muscle hypertrophy through modulation of receptor expression through intercellular metabolism, an anti-catabolic effect, by interfering with glucocorticoid receptor expression and various genomic and non-genomic pathways that act on the central nervous system.[2] Studies of long term AAS users showed an increase in muscle fiber hypertrophy. Both Type I and Type II had significant hypertrophy. Even though Type II muscle fibers compose the majority of muscle mass in power-lifters, it was Type I fibers that enlarged the most with a 33% increase in size. Additionally, Type II fibers require a lesser dose of testosterone 300 mg vs. 600 mg for Type I to exhibit hypertrophy.[3] One of the critical mechanisms by which AAS induces muscle hypertrophy is by increasing synthesis of contractile proteins. Injections (IM) of 200 mg of testosterone enanthate increased synthesis two-fold by increasing the rate at which amino acids underwent reuse, while protein turnover rate was unchanged. Each muscle fiber contains multiple myonuclei that can support a certain level of protein synthesis. With resistance training, these myonuclei increase in size and can support an increase in protein synthesis and cross-sectional area of a muscle fiber. On average, this increase is no more than 26% for Type II muscle fiber, which is termed “ceiling theory,” however, with AAS supplementation, researchers observed a significant increase of 36%.[4] This effect is even higher for Type I muscle fibers. Short term administration of androgenic-anabolic steroids (300 mg per week for 20 weeks) increases the number of muscle satellite cells; this is thought to be because testosterone promotes satellite cell proliferation and entry into the cell cycle. As these cells enter the cell cycle, some daughter cells don’t differentiate and become quiescent cells. Other satellite cells while dividing may become new myonuclei or proceed to form new myotubules.[3] While the exact mechanism remains unclear, murine models showed that testosterone-treated C3H 10T1/2 pluripotent mesenchymal cells showed increases in MyoD and myosin heavy chains. Testosterone supplementation is a potent regulator of lipolysis via influencing catecholamine signal transduction. Testosterone also inhibits adipocyte precursor cells from differentiation.[5] Finally, there may be an androgen receptor-independent pathway through which testosterone may act. AAS may work on G-protein coupled receptor at the plasma membrane, which would increase Ca2+ concentration and activate ERK1/2 kinases, which then would phosphorylate transcription factors.
 

buzzbomb138

Member
Registered
Joined
Nov 29, 2009
Messages
97
just skimmed it but its crazy it says the type I fibers hypertrophied more than the type II, especially since theyre powerlifters. seems their type I fibers wouldnt be used much given the type of training PLers do, but i have heard of muscle fiber types "converting" over time to one or the other depending on need based on regular exercise exposure that needs said type.
 

Forum statistics

Total page views
502,911,814
Threads
123,560
Messages
2,357,147
Members
155,168
Latest member
rkriekle
Top