• All new members please introduce your self here and welcome to the board:
    http://www.professionalmuscle.com/forums/showthread.php?t=259
Buy Needles And Syringes With No Prescription
M4B Store Banner
intex
Riptropin Store banner
Generation X Bodybuilding Forum
Buy Needles And Syringes With No Prescription
Buy Needles And Syringes With No Prescription
Mysupps Store Banner
IP Gear Store Banner
PM-Ace-Labs
Ganabol Store Banner
Spend $100 and get bonus needles free at sterile syringes
Professional Muscle Store open now
sunrise2
PHARMAHGH1
kinglab
ganabol2
Professional Muscle Store open now
over 5000 supplements on sale at professional muscle store
boslabs1
granabolic1
napsgear-210x65
monster210x65
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
DeFiant
UGFREAK-banner-PM
STADAPM
yms-GIF-210x65-SB
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
wuhan2
dpharma
marathon
zzsttmy
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
azteca
crewguru
advertise1x
advertise1x
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store

Clenbuterol & preformance

Pittbull™

New member
Registered
Joined
Jun 17, 2002
Messages
709
Interesting read on how clen can hamper preformance.

Title: Attenuating the decline in ATP arrests the exercise training-induced increases in muscle GLUT4 protein and citrate synthase activity.

Researchers:
Yaspelkis BB 3rd, Castle AL, Ding Z, Ivy JL
Department of Kinesiology, The University of Texas at Austin, 78712, USA.

Source:
Acta Physiol Scand 1999 Jan;165(1):71-9

Summary:

Thirty-two rats were assigned to one of four groups: control (CON); exercise training (TR); exercise training + clenbuterol treatment (0.8 mg/kg/day ) (TR + CL) or exercise training + clenbuterol treatment + 2% beta-guanidinoproprionic acid diet (TR + CL + beta) to examine whether alterations in the ATP levels within the muscle mediates exercise training-induced increases in skeletal muscle GLUT4 protein concentration and citrate synthase activity. Exercise training consisted of running the rats 5 d week(-1) for 8 weeks on a motor-driven treadmill (32 m min(-1), 15% grade).

Gastrocnemius GLUT4 protein concentration and citrate synthase activity were significantly elevated in the TR animals, but these adaptations were attenuated in the TR + CL animals. Providing beta-GPA in combination with clenbuterol enabled training to elevate GLUT4 protein concentration and citrate synthase activity, with the increase in GLUT4 being greater than that observed for the TR animals. Skeletal muscle ATP levels were reduced in the TR + CL + beta animals while ATP levels in the TR + CL animals were significantly elevated compared with CON. An acute 40-min bout of electrical stimulation of the sciatic nerve was found to lower skeletal muscle ATP levels by approximately 50% and elevate cAMP levels in all groups. No difference in post-contraction cAMP levels were observed among groups. However, post-contraction ATP levels in the TR + CL animals were significantly greater than the other groups.

Collectively, these findings suggest that exercise training-induced increases in skeletal muscle GLUT4 protein concentration and citrate synthase activity are initiated in response to a reduction in the skeletal muscle ATP concentration.

Discussion:
Adaptation to training involves increased oxidative capacity of muscle cells along with increases in the muscle’s ability to take up glucose. Increases in the oxidative capacity of muscle cells are characterized by increases in Krebs cycle enzymes. Enhanced glucose uptake is accomplished through increased glucose transporter protein (GLUT 4) content in the muscle cell.

The primary function of the Krebs cycle (also called TCA Cycle or Citric Acid Cycle) is to completely oxidize acetyl groups (derived from the breakdown of glucose, fatty acids, some amino acids, & ketones) in a way that results in ATP formation. Oxidation of acetyl CoA accounts for about two thirds of the ATP formation and oxygen consumption in mammals. Citrate synthase is the enzyme which starts the Krebs cycle by combining Acetyl CoA and oxaloacetate to form citrate. By measuring its activity researchers are able to measure increases in oxidative capacity as a result of exercise training.

Glucose uptake in muscle tissue occurs by facilitated diffusion. The term "facilitated" refers to the use of proteins, embedded in the cell membrane, which help the glucose to diffuse across the membrane. These proteins don’t remain in the cell membrane all the time, rather, they are translocated to the cell surface when insulin attaches to its receptor or when muscle contractions occur. The glucose transporter proteins most sensitive to insulin and muscle contraction are called GLUT 4 proteins. With exercise training, increased GLUT 4 content within muscle cells increases the muscle’s ability to take up glucose from the blood both during exercise and in the presents of insulin. This results in a "nutrient partitioning" (there’s a term you haven’t heard in a while) effect by increasing the portion of dietary carbohydrates that are used by the muscles rather than fat cells.

In the study above it was shown that these adaptations that are normally seen with exercise training, are blocked when the animals were on clenbuterol. Clenbuterol, by activating beta receptors, and thus stimulating adenylate cyclase activity, artificially maintains ATP levels within the cell. When this happens, there is no increase in GLUT 4 protein content nor is there an increase in citrate synthase activity. There appears to be a threshold below which ATP concentrations must fall before your muscles begin long term adaptive changes.

What does all this mean for Clenbuterol users? Well, if you are a performance athlete stay away from it during the competitive season. Clen will inhibit the necessary increases in oxidative capacity need for enhanced athletic performance with training. It will also hamper your attempts to replenish glycogen stores as quickly as possible after competitions.

If you are a bodybuilder Clen is probably going to decrease glycogen storage not only from lower GLUT 4 levels but also from enhanced glycogenolytic activity. It is wrong to assume that ephedrine would be any different. Anything that is going to enhance adenylate cyclase activity such as clenbuterol, ephedrine, or even forskolin, is going to prevent these adaptive processes in response to exercise training. Fortunately, metabolic adaptations are not the key to muscle growth. Nevertheless, increases in oxidative capacity and increased GLUT 4 content are valuable adaptations when trying to train and recover at ever increasing levels.
 
Last edited:
Great read Pittbull. Clen has always been a interesting chemical to me.
 
FORSKOLIN BAD FOR MUSCLE GROWTH?

Interesting read on how clen can hamper preformance.

Title: Attenuating the decline in ATP arrests the exercise training-induced increases in muscle GLUT4 protein and citrate synthase activity.

Researchers:
Yaspelkis BB 3rd, Castle AL, Ding Z, Ivy JL
Department of Kinesiology, The University of Texas at Austin, 78712, USA.

Source:
Acta Physiol Scand 1999 Jan;165(1):71-9

Summary:

Thirty-two rats were assigned to one of four groups: control (CON); exercise training (TR); exercise training + clenbuterol treatment (0.8 mg/kg/day ) (TR + CL) or exercise training + clenbuterol treatment + 2% beta-guanidinoproprionic acid diet (TR + CL + beta) to examine whether alterations in the ATP levels within the muscle mediates exercise training-induced increases in skeletal muscle GLUT4 protein concentration and citrate synthase activity. Exercise training consisted of running the rats 5 d week(-1) for 8 weeks on a motor-driven treadmill (32 m min(-1), 15% grade).

Gastrocnemius GLUT4 protein concentration and citrate synthase activity were significantly elevated in the TR animals, but these adaptations were attenuated in the TR + CL animals. Providing beta-GPA in combination with clenbuterol enabled training to elevate GLUT4 protein concentration and citrate synthase activity, with the increase in GLUT4 being greater than that observed for the TR animals. Skeletal muscle ATP levels were reduced in the TR + CL + beta animals while ATP levels in the TR + CL animals were significantly elevated compared with CON. An acute 40-min bout of electrical stimulation of the sciatic nerve was found to lower skeletal muscle ATP levels by approximately 50% and elevate cAMP levels in all groups. No difference in post-contraction cAMP levels were observed among groups. However, post-contraction ATP levels in the TR + CL animals were significantly greater than the other groups.

If you are a bodybuilder Clen is probably going to decrease glycogen storage not only from lower GLUT 4 levels but also from enhanced glycogenolytic activity. It is wrong to assume that ephedrine would be any different. Anything that is going to enhance adenylate cyclase activity such as clenbuterol, ephedrine, or even forskolin, is going to prevent these adaptive processes in response to to excersize training. Fortunately, metabolic adaptations are not the key to muscle growth. Nevertheless, increases in oxidative capacity and increased GLUT 4 content are valuable adaptations when trying to train and recover at ever increasing levels.


Hi everyone.

I found this old post from 2005 when I was reading up in the archives about Forskolin.

I was sorta suprised that the author felt that Forskolin would be bad for muscle growth.

This article in Wikipedia suggests that Forskolin resensitizes ARs:

Forskolin - Wikipedia, the free encyclopedia

Since most people usually go with "time on = time off" as a basic premise in planning cycles, I thought that Forskolin enhanced cAMP production in PCT might allow for shorter waiting periods in betwen cycles.

Can anyone comment on the apparent dissagreement between this threads assertion that Forskolin is bad for muscle growth & the Wikipedia article's assertion that Forskolin cAMP resensitizes ARs?

I understand that there isn't necessarily a total dissagrement between the two assertions, because this thread's initial post does state that the referenced study shows that Clen (& Forskolin etc) excercise based metabolic adaptations are blocked by Clen which artificially maintains an unnatural level of adenylate cyclase & ATP, with an attendant reduction in Glut4 protein & Citrate synthase. That statement in itself doesn't necessarilly mean that Forskolin is always bad for muscle growth, only that it suppresses metabolic adaptation to excercise, which is one factor in muscle growth.

In other words, while Forskolin MAY suppress Glut4 protein & Citrate synthase, thereby preventing the anabolic benefits of metabolic adaptation caused by excercise, it may still be beneficial for off-cycle PCT use to reset ARs allowing a shorter waiting period in between AAS cycles.

Any input on this subject?
 

Staff online

  • rAJJIN
    Moderator / FOUNDING Member
  • Big A
    IFBB PRO/NPC JUDGE/Administrator

Forum statistics

Total page views
576,104,706
Threads
138,446
Messages
2,857,099
Members
161,444
Latest member
asd222
NapsGear
HGH Power Store email banner
yourdailyvitamins
Prowrist straps store banner
yourrawmaterials
3
raws
Savage Labs Store email
Syntherol Site Enhancing Oil Synthol
aqpharma
yms-GIF-210x131-Banne-B
hulabs
ezgif-com-resize-2-1
MA Research Chem store banner
MA Supps Store Banner
volartek
Keytech banner
thc
Godbullraw-bottom-banner
Injection Instructions for beginners
YMS-210x131-V02
Back
Top