• All new members please introduce your self here and welcome to the board:
    http://www.professionalmuscle.com/forums/showthread.php?t=259
Buy Needles And Syringes With No Prescription
M4B Store Banner
intex
Riptropin Store banner
Generation X Bodybuilding Forum
Buy Needles And Syringes With No Prescription
Buy Needles And Syringes With No Prescription
Mysupps Store Banner
IP Gear Store Banner
PM-Ace-Labs
Ganabol Store Banner
Spend $100 and get bonus needles free at sterile syringes
Professional Muscle Store open now
sunrise2
PHARMAHGH1
kinglab
ganabol2
Professional Muscle Store open now
over 5000 supplements on sale at professional muscle store
boslabs1
granabolic1
napsgear-210x65
monster210x65
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
DeFiant
UGFREAK-banner-PM
STADAPM
yms-GIF-210x65-SB
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
wuhan2
dpharma
marathon
zzsttmy
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
azteca
crewguru
advertise1x
advertise1x
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store
over 5000 supplements on sale at professional muscle store

Trenbolone Stimulates Collagen Synthesis

Joined
Dec 6, 2005
Messages
72
Although it goes against common "wisdom", it stands to reason that Tren does, in fact, stimulate collagen synthesis, thereby helping your joints.

You see, tren increases IGF-1 to a great degree, which ought to stimulate the growth of tendons, as we all know.



Endocrinology. 1989 May;124(5):2110-7.



Trenbolone alters the responsiveness of skeletal muscle satellite cells to fibroblast growth factor and insulin-like growth factor I.


Thompson SH, Boxhorn LK, Kong WY, Allen RE.

Department of Animal Sciences, University of Arizona, Tucson 85721.



The potential role of satellite cells in mediating the effect of trenbolone [17 beta-hydroxyestra-4,9-11-trien-3-one (TBOH)] on skeletal muscle hypertrophy was examined. Young female Sprague-Dawley rats received TBOH injections daily for 2 weeks; growth, body composition, and the composition of selected muscles were assessed. Treated rats grew more rapidly and deposited less body lipid and more protein. The semimembranosus muscle from treated rats was larger and had approximately 60% more DNA per muscle than muscles from control rats. The addition of trenbolone directly to the medium of cultured satellite cells did not stimulate cell proliferation, nor did it augment the stimulatory response of these cells to fibroblast growth factor (FGF) or insulin-like growth factor I (IGF-I). In contrast, satellite cells cultured from TBOH-treated rats exhibited greater proliferative responses to FGF and IGF-I than satellite cells from control rats. In addition, serum from TBOH-treated rats stimulated greater cell proliferation in satellite cell cultures than serum from control rats. These experiments suggest that one possible mechanism responsible for the ability of TBOH to stimulate skeletal muscle hypertrophy may be through enhanced proliferation and differentiation of satellite cells as a result of the increased sensitivity of these cells to IGF-I and FGF.



PMID: 2707149 [PubMed - indexed for MEDLINE]

You will also note that Tren treated satellite cells showed an increased response to FGF (fibroblast growth factor). Again, as we know, (basic)FGF stimulates collagen synthesis:



Sports Med. 2003;33(5):381-94.The roles of growth factors in tendon and ligament healing.



Molloy T, Wang Y, Murrell G.



Orthopaedic Research Institute, St George Hospital Campus, University of New South Wales, Sydney, Australia.



Tendon healing is a complex and highly-regulated process that is initiated, sustained and eventually terminated by a large number and variety of molecules. Growth factors represent one of the most important of the molecular families involved in healing, and a considerable number of studies have been undertaken in an effort to elucidate their many functions. This review covers some of the recent investigations into the roles of five growth factors whose activities have been best characterised during tendon healing: insulin-like growth factor-I (IGF-I), transforming growth factor beta (TGFbeta), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). All five are markedly up-regulated following tendon injury and are active at multiple stages of the healing process. IGF-I has been shown to be highly expressed during the early inflammatory phase in a number of animal tendon healing models, and appears to aid in the proliferation and migration of fibroblasts and to subsequently increase collagen production. TGFbeta is also active during inflammation, and has a variety of effects including the regulation of cellular migration and proliferation, and fibronectin binding interactions. VEGF is produced at its highest levels only after the inflammatory phase, at which time it is a powerful stimulator of angiogenesis. PDGF is produced shortly after tendon damage and helps to stimulate the production of other growth factors, including IGF-I, and has roles in tissue remodelling.In vitro and in vivo studies have shown that bFGF is both a powerful stimulator of angiogenesis and a regulator of cellular migration and proliferation. This review also covers some of the most recent studies into the use of these molecules as therapeutic agents to increase the efficacy and efficiency of tendon and ligament healing. Studies into the effects of the exogenous application of TGFbeta, IGF-I, PDGF and bFGF into the wound site singly and in combination have shown promise, significantly decreasing a number of parameters used to define the functional deficit of a healing tendon. Application of IGF-I has been shown to increase in the Achilles Functional Index and the breaking energy of injured rat tendon. TGFbeta and PDGF have been shown separately to increase the breaking energy of healing tendon. Finally, application of bFGF has been shown to promote cellular proliferation and collagen synthesis in vivo.




Therefore, Trenbolone, by stimulating (b)FGF as well as IGF-1 - certainly would stimulate collagen synthesis. I don't know of anyone who claims tren healed any injuries...but the evidence is here to suggest it.
 
I'm lost, the first paragraph seems to condradict itself.

"nor did it augment the stimulatory response of these cells to fibroblast growth factor (FGF) or insulin-like growth factor I (IGF-I). In contrast, satellite cells cultured from TBOH-treated rats exhibited greater proliferative responses to FGF and IGF-I than satellite cells from control rats. "

first part says no stim response to fgf & igf then 2nd para says greater proliferative responses to fgf & igf

proliferative means to reproduce


so satellite cells reproduce under the treatment of tren?
 
This is GREAT news!

Now maybe I can finally get that script for Tren that I've been wanting!:D
 

Staff online

  • pesty4077
    Moderator/ Featured Member / Kilo Klub

Forum statistics

Total page views
575,845,586
Threads
138,425
Messages
2,857,018
Members
161,425
Latest member
Gwill3003
NapsGear
HGH Power Store email banner
yourdailyvitamins
Prowrist straps store banner
yourrawmaterials
FLASHING-BOTTOM-BANNER-210x131
raws
Savage Labs Store email
Syntherol Site Enhancing Oil Synthol
aqpharma
yms-GIF-210x131-Banne-B
hulabs
ezgif-com-resize-2-1
MA Research Chem store banner
MA Supps Store Banner
volartek
Keytech banner
musclechem
Godbullraw-bottom-banner
Injection Instructions for beginners
YMS-210x131-V02
3
thc
YMS-210x131-V02
Back
Top