- Joined
- Sep 25, 2002
- Messages
- 5,878
A few on the board have been saying this for a few years now.
: Med Hypotheses. 2009 Mar;72(3):314-21. Epub 2008 Dec 2.Click here to read Links
Vitamin D deficiency is the cause of common obesity.
Foss YJ.
Caterham on the Hill, Caterham, Surrey, UK.
Common obesity is associated with the metabolic syndrome and can be distinguished from secondary obesity and from rare forms of monogenic and polygenic obesity. The prevalence of common obesity has become a public health concern in many countries as phenomenological approaches to the understanding of obesity have failed to achieve any long term effect on prevention or treatment. There is evidence for a central control mechanism which maintains body-weight to a set-point by the regulation of energy intake and energy expenditure through homeostatic pathways. It is suggested in this paper that common obesity occurs when the set-point is raised and that accumulation of fat mass functions to increase body size. Larger body size confers a survival advantage in the cold ambient temperatures and food scarcity of the winter climate by reducing surface area to volume ratio and by providing an energy store in the form of fat mass. In addition, it is suggested that the phenotypic metabolic and physiological changes observed as the metabolic syndrome, including hypertension and insulin resistance, could result from a winter metabolism which increases thermogenic capacity. Common obesity and the metabolic syndrome may therefore result from an anomalous adaptive winter response. The stimulus for the winter response is proposed to be a fall in vitamin D. The synthesis of vitamin D is dependent upon the absorption of radiation in the ultraviolet-B range of sunlight. At ground level at mid-latitudes, UV-B radiation falls in the autumn and becomes negligible in winter. It has previously been proposed that vitamin D evolved in primitive organisms as a UV-B sensitive photoreceptor with the function of signaling changes in sunlight intensity. It is here proposed that a fall in vitamin D in the form of circulating calcidiol is the stimulus for the winter response, which consists of an accumulation of fat mass (obesity) and the induction of a winter metabolism (the metabolic syndrome). Vitamin D deficiency can account for the secular trends in the prevalence of obesity and for individual differences in its onset and severity. It may be possible to reverse the increasing prevalence of obesity by improving vitamin D status.
: Med Hypotheses. 2009 Mar;72(3):314-21. Epub 2008 Dec 2.Click here to read Links
Vitamin D deficiency is the cause of common obesity.
Foss YJ.
Caterham on the Hill, Caterham, Surrey, UK.
Common obesity is associated with the metabolic syndrome and can be distinguished from secondary obesity and from rare forms of monogenic and polygenic obesity. The prevalence of common obesity has become a public health concern in many countries as phenomenological approaches to the understanding of obesity have failed to achieve any long term effect on prevention or treatment. There is evidence for a central control mechanism which maintains body-weight to a set-point by the regulation of energy intake and energy expenditure through homeostatic pathways. It is suggested in this paper that common obesity occurs when the set-point is raised and that accumulation of fat mass functions to increase body size. Larger body size confers a survival advantage in the cold ambient temperatures and food scarcity of the winter climate by reducing surface area to volume ratio and by providing an energy store in the form of fat mass. In addition, it is suggested that the phenotypic metabolic and physiological changes observed as the metabolic syndrome, including hypertension and insulin resistance, could result from a winter metabolism which increases thermogenic capacity. Common obesity and the metabolic syndrome may therefore result from an anomalous adaptive winter response. The stimulus for the winter response is proposed to be a fall in vitamin D. The synthesis of vitamin D is dependent upon the absorption of radiation in the ultraviolet-B range of sunlight. At ground level at mid-latitudes, UV-B radiation falls in the autumn and becomes negligible in winter. It has previously been proposed that vitamin D evolved in primitive organisms as a UV-B sensitive photoreceptor with the function of signaling changes in sunlight intensity. It is here proposed that a fall in vitamin D in the form of circulating calcidiol is the stimulus for the winter response, which consists of an accumulation of fat mass (obesity) and the induction of a winter metabolism (the metabolic syndrome). Vitamin D deficiency can account for the secular trends in the prevalence of obesity and for individual differences in its onset and severity. It may be possible to reverse the increasing prevalence of obesity by improving vitamin D status.